Lecture 30: Chi-Square, Student’s t, Multivariate Normal
Stat 110, Prof. Joe Blitzstein, Harvard University
$\chi^2$ Distribution
The Chi-square Distribution is denoted as $\chi^2(n)$ or sometimes $\chi_{n}^2$, where $n$ indicates the degrees of freedom. It used everywhere (I think you used it before in feature analysis). It is related to Normal distribution.
Let $V = Z_1^2 + Z_2^3 + \dots + Z_n^2$, where the $Z_j$ are i.i.d. $\mathcal{N}(0,1)$. Then by definition, $V \sim \chi^2(n)$.
You will find that in a lot of things involving statistics, the sum of squares of $\mathcal{N}(0,1)$ often pops up.
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import (MultipleLocator, FormatStrFormatter,
AutoMinorLocator)
from scipy.stats import chi2
%matplotlib inline
plt.xkcd()
dof_values = [1,2,3,4,5,6,7,8]
x = np.linspace(0, 10, 1000)
# plot the distributions
_, ax = plt.subplots(figsize=(12,8))
for d in dof_values:
ax.plot(x, chi2.pdf(x, d), lw=3.2, alpha=0.6, label='df={}'.format(d))
# legend styling
legend = ax.legend()
for label in legend.get_texts():
label.set_fontsize('large')
for label in legend.get_lines():
label.set_linewidth(1.5)
# y-axis
ax.set_ylim([0.0, 0.5])
ax.set_ylabel(r'$f(x)$')
# x-axis
ax.set_xlim([0, 10.0])
ax.set_xlabel(r'$x$')
# x-axis tick formatting
majorLocator = MultipleLocator(2.0)
majorFormatter = FormatStrFormatter('%0.1f')
minorLocator = MultipleLocator(1.0)
ax.xaxis.set_major_locator(majorLocator)
ax.xaxis.set_major_formatter(majorFormatter)
ax.xaxis.set_minor_locator(minorLocator)
ax.grid(color='grey', linestyle='-', linewidth=0.3)
plt.suptitle(r'Examples of $\chi^2_n$ with varying degrees of freedom')
plt.show()
Fact: $\chi^2(1)$ is $\operatorname{Gamma}(\frac{1}{2}, \frac{1}{2})$
Proof
Let $Y = Z^2$ where $Z \sim \mathcal{N}(0,1)$ and $y \gt 0$.
\begin{align}
P(Y \le y) &= P(Z^2 \le y)
&= P( -y^{\frac{1}{2}} \le y \le y^{\frac{1}{2}})
&= \Phi(y^{\frac{1}{2}}) - \Phi(y^{-\frac{1}{2}})
&= \Phi(y^{\frac{1}{2}}) - \left( 1 - \Phi(y^{\frac{1}{2}}) \right)
&= 2 \, \Phi(y^{\frac{1}{2}}) - 1
\Rightarrow f_{Y}(y) &= y^{-\frac{1}{2}} \, \phi(y^{\frac{1}{2}})
&= \frac{1}{\sqrt{2\pi}} \, y^{-\frac{1}{2}} \, e^{-\frac{y}{2}}
\operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right) &=
\frac{1}{\Gamma(\frac{1}{2})} \, \left(\frac{y}{2}\right)^{\frac{1}{2}} \,
e^{-\frac{y}{2}} \, \frac{1}{y}
&= \frac{1}{\sqrt{\pi}} \, \sqrt{\frac{y}{2}} \, e^{-\frac{y}{2}} \,
\frac{1}{y}
&= \frac{1}{\sqrt{2\pi}} \, y^{-\frac{1}{2}} \, e^{-\frac{y}{2}}
&\blacksquare
\end{align}
Here’s a quick graph to illustrate.
from scipy.stats import gamma
_, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(14,6))
x = np.linspace(0, 20, 1000)
ax1.plot(x, chi2.pdf(x, 1), lw=3.2, alpha=0.6, color='#33AAFF', label='df=1')
ax1.set_title('$\chi^2_1$', y=1.02)
ax1.set_xlim((0,20.0))
ax1.set_ylim((0,0.5))
ax1.legend()
ax1.grid(color='grey', linestyle='-', linewidth=0.3)
# gamma.pdf API: scale = 1 / beta
l = 0.5
ax2.plot(x, gamma.pdf(x, 0.5, scale=1/l), lw=3.2, alpha=0.6, color='#FF9933', label=r'$\alpha$=1/2, $\lambda$=1/2')
ax2.set_title(r'$Gamma(\frac{1}{2}, \frac{1}{2})$', y=1.02)
ax2.set_xlim((0,20.0))
ax2.set_ylim((0,0.5))
ax2.legend()
ax2.grid(color='grey', linestyle='-', linewidth=0.3)
None
Fact: $\chi^2(n)$ is $\operatorname{Gamma}\left( \frac{n}{2}, \frac{1}{2}
\right)$
It follows then that $\chi^2(n) = \operatorname{Gamma}\left( \frac{n}{2}, \frac{1}{2} \right)$
_, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(14,6))
x = np.linspace(0, 20, 1000)
dof_values = [1, 2, 5, 10, 20]
col_alph_values = [0.8, 0.6, 0.5, 0.4, 0.3]
for df,c_alph in zip(dof_values, col_alph_values):
ax1.plot(x, chi2.pdf(x, df), color='#33AAFF', lw=3.2, alpha=c_alph, label='df={}'.format(df))
ax1.set_title('$\chi^2_n$ for varying degrees of freedom', y=1.02)
ax1.set_xlim((0,20.0))
ax1.set_ylim((0,0.5))
ax1.legend()
ax1.grid(color='grey', linestyle='-', linewidth=0.3)
# gamma.pdf API: scale = 1 / lambda
l = 0.5
for alph,c_alph in zip(dof_values, col_alph_values):
ax2.plot(x, gamma.pdf(x, alph/2, scale=1/l), lw=3.2, alpha=c_alph, color='#FF9933', label=r'$\alpha$={}/2, $\lambda$=1/2'.format(alph))
ax2.set_title(r'$Gamma(\frac{n}{2}, \frac{1}{2})$ for varying n', y=1.02)
ax2.set_xlim((0,20.0))
ax2.set_ylim((0,0.5))
ax2.legend()
ax2.grid(color='grey', linestyle='-', linewidth=0.3)
None
Student’s $t$-Distribution
The Student’s $t$-distribution can be described in terms of the standard normal $Z \sim N(0,1)$ and $X^2$ $V(n)$ distributions, so that means it can be entirely described in terms of the standard normal distribution.
Let $T = \frac{Z}{\sqrt{V/n}}$, with $Z \sim \mathcal{N}(0,1)$ and $V \sim \chi^2(n)$, where $Z, V$ are independent.
Then we can write $T \sim t_n$, where $n$ is the degrees of freedom.
$t_1$ does not have a $1^{st}$ moment; $t_2$ does not have a $2^{nd}$ moment; $t_3$ does not have a $3^{rd}$ moment; and so on. Odd moments, if they exist, are 0
from scipy.stats import t
dof_values = [1,2,5,10,30,1E10]
col_alph_values = [0.2, 0.3, 0.4, 0.5, 0.6, 0.8]
x = np.linspace(-5, 5, 1000)
# plot the distributions
fig, ax = plt.subplots(figsize=(8, 6))
for df,c_alph in zip(dof_values, col_alph_values):
if df > 30:
dl = r'$+\infty$'
else:
dl = df
ax.plot(x, t.pdf(x, df), lw=3.2, color='#A93226', alpha=c_alph, label=r'df={}'.format(dl))
# legend styling
legend = ax.legend()
for label in legend.get_texts():
label.set_fontsize('large')
for label in legend.get_lines():
label.set_linewidth(1.5)
# y-axis
ax.set_ylim([0, .43])
ax.set_ylabel(r'$P(x)$')
# x-axis
ax.set_xlim([-3.0, 3.0])
ax.set_xlabel(r'$x$')
ax.grid(color='grey', linestyle='-', linewidth=0.3)
plt.title(r'Examples of $t_n$ with varying degrees of freedom', y=1.02)
plt.text(x=3.5, y=0.22, s=r'Fatter tails with fewer degrees of freedom')
plt.text(x=3.5, y=0.19, s=r'Approaches $\mathbb{N}(0,1)$ as $df \rightarrow +\infty$')
plt.show()
Properties
- symmetric, i.e., $-T \sim t_n$ <p/>
- $n=1 \, \Rightarrow $ Cauchy, so $t_1$ does not have a mean<p/>
- $n \ge 2 \Rightarrow \mathbb{E}(T) = \mathbb{E}(Z)\,\mathbb{E}\left(\frac{1}{\sqrt{V/n}}\right) = 0$ <p/>
- heavier-tailed than Normal <p/>
- for $n$ large, $t_n$ looks very much like Normal <p/>
Brief interlude: even moments of $Z$ and the Gamma distribution
It was proved earlier that for $Z \sim \mathcal{N}(0,1)$, the even moments are such that
\begin{align}
\mathbb{E}(Z^2) &= 1
\mathbb{E}(Z^4) &= 1 \times 3 = 3
\mathbb{E}(Z^6) &= 1 \times 3 \times 5 = 15 &\quad \text{ skip factorial}
\end{align}
Now, this was proven using moment-generating functions, but we can also relate this to the Gamma distribution.
\begin{align}
\mathbb{E}(Z^{2n}) &= \mathbb{E}\left( (Z^2)^n \right)
&= \mathbb{E}\left( \chi^2_1 )^n \right) &\text{ but by definition } Z^2
\text{ is } \chi^2_1
&= \mathbb{E}\left( \operatorname{Gamma}(\frac{1}{2}, \frac{1}{2})^n \right)
\end{align}
… and after this point, we can use our knowledge of the Gamma distribution and LOTUS.
Finding $\mathbb{E}(Z^8)$ with $\operatorname{Gamma}(\frac{1}{2},
\frac{1}{2})$
\begin{align}
\mathbb{E}(Z^8) &= \mathbb{E}\left( (Z^2)^4 \right)
&= \mathbb{E}\left( \operatorname{Gamma}(\frac{1}{2}, \frac{1}{2})^4 \right)
&= \frac{\Gamma(\alpha + 4)}{\Gamma(\alpha) \, \lambda^4}
&= \frac{(\alpha + 3) \, \Gamma(\alpha + 3)}{\Gamma(\alpha) \, \lambda^4}
&= \frac{(\alpha + 3) \, (\alpha + 2) \, \Gamma(\alpha + 2)}{\Gamma(\alpha) \,
\lambda^4}
&= \frac{(\alpha + 3) \, (\alpha + 2) \, (\alpha + 1) \, \Gamma(\alpha +
1)}{\Gamma(\alpha) \, \lambda^4}
&= \frac{(\alpha + 3) \, (\alpha + 2) \, (\alpha + 1) \, \alpha \,
\Gamma(\alpha)}{\Gamma(\alpha) \, \lambda^4}
&= \frac{\frac{7}{2} \, \frac{5}{2} \, \frac{3}{2} \,
\frac{1}{2}}{\frac{1}{2^4}}
&= 1 \times 3 \times 5 \times 7
&= 105
\end{align}
You can double-check this answer on WolframAlpha.
Proof of property 5: Student’s $t$ when $n$ get large
Let’s prove property 5 above, but use the Law of Large Numbers (c.f. Lesson 29).
- Let $T_n = \frac{Z}{\sqrt{V/n}}$ with $Z_1, Z_2, \dots , Z_n$ i.i.d. $\mathcal{N}(0,1)$
- $V = Z_1^2 + Z_2^2 + \dots + Z_n^2$
- $Z$ is independent of the $Z_j^2$
Now we can choose any distribution for this case as long as it is $\mathcal{N}(0,1)$, and so there is nothing wrong in choosing the same distribution $Z$ for the numerator and all elements of the denominator as well.
Then $\frac{V_n}{n} \rightarrow 1$ with probability 1 by the Law of Large Numbers, since the average $\frac{V_n}{n}$ will approach the true average $Z_1^2$ as $n$ gets large. We know that $Z_1^2 = 1$.
Now, the Law of Large Numbers is with regards to point-wise estimates, so we can further state that $\sqrt{\frac{V_n}{n}} \rightarrow 1$ with probability 1.
So $T_n \rightarrow Z$ with probability 1, since the denominator goes to 1 when you have a large number of degrees of freedom; only the $Z$ in the numerator will be of importance.
\begin{align} \end{align}
Multivariate Normal
Definition
Random vector $(X_1, X_2, \cdots , X_k) = \vec{X}$ is Multivariate Normal if every linear combination $t_1 X_1 + t_2 X_2 + \cdots + t_k X_k$ is Normal.
An example that is multivariate Normal
Let $Z, W$ be i.i.d. $\mathcal{N}(0,1)$. Then $( Z + 2W, 3 \, Z + 5W)$ is multivariate Normal (MVN).
Given constants $s,t$
\begin{align}
s (Z + 2 \, W) + t (3 \, Z + 5 \, W) &= (s + 3t) Z + (2s + 5t) W
\end{align}
But since this is $(s + 3t)$ and $(2s + 5t)$ are just scaling independent Normal random variables $Z$ and $W$ respectively; and since we know that the sum of Normal random variables is also Normal, we know that $(s + 3t) Z + (2s + 5t) W$ is also necessarily a Normal r.v.
A non-example (NOT multivariate Normal)
Let $Z \sim \mathcal{N}(0,1)$, and let $S$ be a random sign that is independent of $Z$.
Then $Z,SZ$ are marginally $\mathcal{N}(0,1)$ (consider both individually on their own).
But $(Z, SZ)$ is not multivariate normal! Just test this by considering $(Z + SZ)$.
$Z + SZ$ cannot be Normal, since:
- half the time, the sum of $Z$ and $SZ$ will be zero when $S$ is negative
- the other times, the sum will be $2Z$
- this is some mixture of discrete and continuous
MGF of $\vec{X}$
Now with $X \sim \mathcal{N}(\mu, \sigma^2)$, the moment generating function $M(X)$ is
\begin{align}
M(X) &= \mathbb{E}(e^{tX})
&= e^{t\mu + \frac{1}{2} \, t^2 \sigma^2} \
\end{align}
Extending this one-dimensional case to the multidimensional $\vec{X}$:
\begin{align}
M(\vec{X}) &= \mathbb{E}(e^{\vec{t} \, \vec{X}})
&= \mathbb{E}(e^{t_1 \, X_1 + t_2 \, X_2 + \cdots + t_n \, X_n})
&= \mathbb{E}(e^{t_1 \, \mu_1 + t_2 \, \mu_2 + \cdots + t_n \, \mu_n +
\frac{1}{2} Var(t_1 \, X_1 + t_2 \, X_2 + \cdots + t_n \, X_n)}
\end{align}
Theorem: Within an MVN, uncorrelated implies independent
Recall that in general, independence implies uncorrelation, but the vice versa is not always true. In the case of an MVN, however, it is true.
In other words, consider vector
\begin{align}
\vec{X} &= \begin{bmatrix}
\vec{X_1}
\vec{X_2}
\end{bmatrix}
\end{align}
If every component of $\vec{X_1}$ is uncorrelated with every component of $\vec{X_2}$, then $\vec{X_1}$ is independent of $\vec{X_2}$.
Example
Let $X,Y$ be i.i.d. $\mathcal{N}(0,1)$. Then $(X+Y, X-Y)$ is MVN (bivariate Normal to be precise).
It is easy enough to show that $X+Y$ and $X-Y$ are uncorrelated:
\begin{align}
\operatorname{Cov}(X+Y, X-Y) &= \operatorname{Var}(X) +
\operatorname{Cov}(X,Y) - \operatorname{Cov}(X,Y) - \operatorname{Var}(Y)
&= \operatorname{Var}(X) - \operatorname{Var}(Y)
&= 1 - 1
&= 0
\end{align}
But can we show that $X+Y$ and $X-Y$ are independent?
Proof
Let’s try for something a bit more abstract.
We suppose that $X,Y$ are independent, zero-mean normal random variables with variances $\sigma_U, \sigma_V$.
Let $U = aX + bY$, and $V = cX + dY$ so that $U,V$ are jointly normal; this is a more general represention of the above example, where $a = 1, b=1, c=1, d=-1$.
Say we have some scalars $t_1, t_2$, and let $Z = t_{1}U + t_{2}V$. Then
\begin{align}
M_{U,V}(t_1, t_2) &= \mathbb{E}(e^{t_1 \, U + t_2 \, V})
&= \mathbb{E}(e^{Z})
&= \mathbb{E}(e^{t_1 \, \mu_U + t_2 \, \mu_V + \frac{1}{2} Var(t_1 \, U + t_2
\, V)}
&= \mathbb{E}(e^{\frac{1}{2} Var(t_1 \, U + t_2 \, V})
&= \mathbb{E}(e^{\frac{t_U^2 \, \sigma_U^2 + t_V^2 \, \sigma_V^2}{2}})
\end{align}
Now let $U\prime, V\prime$ be independent zero-mean normal random variables with the same variances $\sigma_U, \sigma_V$. Since $U\prime, V\prime$ are independent, they are also uncorrelated, and so the moment generating function of their bivariate normal distribution is given by $M_{U\prime,V\prime}(t_1, t_2) = \mathbb{E}(e^{\frac{t_U^2 \, \sigma_U^2 + t_V^2 \, \sigma_V^2}{2}}) $.
Since both $U,V$ and $U\prime,V\prime$ have the same moment generating function, they are boht associated with the same bivariate Normal distribution (they share the same joint PDF).
Thereforce, since $U\prime,V\prime$ are independent, we conclude that $U,V$ are also independent. QED.
View Lecture 30: Chi-Square, Student-t, Multivariate Normal | Statistics 110 on YouTube.